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Volterra-Mapping-Based Behaviora Modeling
of Nonlinear Circuits and Systems
for High Frequencies

Tianhai Wang, Member, |EEE, and Thomas J. Brazil, Senior Member, IEEE

Abstract—T hispaper presentsand validatesa discrete-time/fre-
quency-domain approach to the problem of Volterra-series-based
behavioral modeling for high-frequency systems. The proposed
techniqueisbased on theacquisition of samplesof theinput/output
data, both of which are sampled at the Nyquist rate corresponding
to the input signal. The method is capable of identifying the
time-/frequency-domain Volterra kernelgtransfer functions of
arbitrary causal time-invariant weakly nonlinear circuits and
systems operating at high frequencies subject to essentially a
general random or multitone excitation. The validity and effi-
ciency of the proposed modeling approach has been demonstrated
by several examples in high-frequency applications and good
agreement has been obtained between results calculated using
the proposed model and results measured or simulated with
commercial simulation tools.

Index Terms—Behavioral modeling, high-frequency systems,
nonlinear circuits and systems, Volterra series.

I. INTRODUCTION

TIMULATED by the enormous growth in the com-
ercial applications of RF/microwave technologies,
computer-aided design (CAD) is becoming a critical enabling
technology in the development of modern high-frequency
circuits and systems, e.g., in third-generation digital mobile
cellular communication systems around 2.0 GHz [1], [2].
Although CAD encompasses a great many aspects of design,
it is very important that practical analysis tools demonstrate
an efficient simulation speed and they should also provide
an accurate modeling environment for the prediction of the
nonlinear behavior of RF/microwave circuits and systems.

Due to the advantages of using a behavioral model (also
called a “black-box” model) in simulation, it has become an
approach recently investigated by many researchers [3]-{5].
In general, the time-domain unit impulse response or its
associated frequency-domain transfer function can completely
characterize the behavior of any linear time-invariant network,
and these can be thought as a form of behavioral model for
linear networks. A typical example in the high-frequency
regimeisprovided by the S-parameters of alinear network. For
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nonlinear networks, however, an extension through an approach
such as the Volterra theory has to be used to find an equivalent
framework. Volterra series-based behavioral models have been
used successfully to solve many problems in science and engi-
neering and this kind of approach is playing an ever-increasing
role in recent years [6]-{9]. A critical problem in utilizing
Volterra mapping as the basis for a behavioral model is the
identification/estimation of the time-domain Volterra kernels
or the associated frequency-domain Volterratransfer functions.
Several identification algorithms in the frequency-domain
have been introduced in earlier work with the assumption of
Gaussian inputs [10], Poisson random impulse train inputs
[11], or multitone sinusoidal inputs [12]. Although these can
lead to a significant simplification of the identification process,
the input excitations in the first two cases are assumed to
satisfy strict Gaussian or Poisson statistical properties, while
the probe method is only valid for certain nonlinear circuits or
systems subject to incommensurate multitone sinusoidal input
[10]12].

Other discrete frequency-domain methods with subsequent
improvements [7], [8] have been described, which are more
general in the sense that no specific statistical assumption needs
be made about the input. However, the sampling frequency
must be at least n-times the bandwidth of the input signal
for the identification of an nth-order Volterra-series-based
nonlinear system. The corresponding computation complexity
isincreased since, in the first place, large-order discrete Fourier
transforms (DFTs) are required under these sampling frequency
conditions, and secondly, increased quantities of data samples
in blocks are required for the estimation of Volterra transfer
functions to meet the minimum mean square error (MM SE)
estimate criterion. Furthermore, diasing effects have been
largely ignored in the literature to date when digital methods
have been used to identify Volterrakernels for continuous-time
nonlinear systems using sampling techniques.

The method proposed in this paper aimsto achieveimproved
performance compared to conventional discrete frequency-do-
main methods by performing a mixed-domain (time- and fre-
guency-domain) analysis[9]. It seeks to overcome some of the
disadvantages of previously reported methods by properly ac-
counting for the aliasing effect under the much more favorable
condition of Nyquist sampling of the input signal, while also
providing greater accuracy by adapting a least squares solu-
tion technique with minimally sampled data blocks. Some in-
dividual parts of this study have already been briefly outlined
in the authors’ earlier publications [13]-{16], however, a more
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systematic and unified discussion of the mathematical basisis
provided in this paper. In order to properly describe the basis
and range of applicability of the proposed approach, our atten-
tion is focused on the Volterra-based modeling of an arbitrary
causal time-invariant cubically nonlinear system. This paper is
organized as follows. In Section 11, we introduce techniques to
take account of aliasing effects, which result in improved sam-
pling requirements for nonlinear system identification. In Sec-
tion 111, amixed-domain analysisis performed to obtain the dis-
crete mixed-domain model. In Section 1V, we describe the esti-
mation procedure of the Volterrakernels and transfer functions.
Finally, computer simulation and experimentation are presented
in Section V.

Il. ALIASING EFFECTS AND SAMPLING REQUIREMENTS

For the numerical identification of a Volterra-mapping-based
nonlinear system, the input/output signals must be sampled for
further processing. It is well known that a nonlinear system
may generate new output frequency components that extend far
beyond the input frequency bandwidth. Therefore, in previous
studies on nonlinear system identification [6]9], the sampling
frequency is more than twice the maximum output frequency
in order to avoid aliasing effects. However, it is sufficient to
sample at twice the maximum input frequency for nonlinear
system identification if the aliasing effect is taken into account.
The details will be demonstrated in this section.

In the discrete time domain, a Volterra-series description of a
cubic nonlinearity can be defined using a discrete-time version
of the continuous time-domain series as [6]—{ 9]

+oo +oo 4o
= Zh1(L)$(7‘L—L) —i—Z Z ho(i, jz(n—>9z(n—j)
+oo +oo too
+Z Z > ha(i, j, k)z(n — i)
~x(n —j)x(n — k) + e(n) @

where z(n) and y(n) are sampled versions of the contin-
uous-time input/output signals, while e(n) denotes the model
error at thetimeinstant n’7" (7" isthe sampling timeinterval and
hi(i), ho(i, 5),and hs(i, j, k) correspond to thefirst-, second-,
and third-order discrete-time Volterrakernels, respectively).

Suppose an input signal band-limited to half the sampling
frequency is applied to this nonlinear system. In the frequency
domain, the Volterramodel can be described as

Y(f) =Yi(f) + Ya(f) + Y3(f) 2
where
Yi(f) =Hi(f)X(f) ©)
+1/2T
Ya(f) =T/ Vo(f — fi f)df ()
—1/2T
+1/2T p41/2T
/1/2T /1/2T
Ya(f — fi, fr = fa, f2)dfvdfs (B)
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Fig. 1. lllustration of the discretetime operation that reduces the
two-dimensional frequency function Y to the one-dimensiona Fourier
transform Y'¢ of the output signal. In particular, it shows the generation of the
output components at fo.
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Fig. 2. lllustration of the discrete-time operation that reduces the
three-dimensional frequency function Y to the one-dimensional Fourier
transform Y'¢ of the output signal. In particular it shows the generation of the
output components at fy.

Yo(f1, f2) = Hao(f1, f2) X (f1)X(f2) (6)
3

Ya(fi, fa, f3) = Ha(f1, fa, f3) [[ X (f) (7
=1

X(f)and Y (f) are the discrete Fourier transform of z(n) and
y(n), while Hl(f), Hg(fl, fg), and Hg(f1, fQ, fg) are the
one-, two-, and three-dimensional discrete Fourier transforms
of hy(4), ha(é, j), and hg(z, 7, k), respectively.

For any output frequency component f, (0 < f, < fs—1/T),
thelinear part of Y7 (f,) satisfiesthe well-known Shannon sam-
pling theorem, hence, the output Y1 (f,) has no aliased compo-
nents, but the quadratic part Y>( f,, ) andthecubic part Y3(f, ) are
obtained through the contraction operation as given by (4) and
(5). Aliasing effects exist for these, and they may be assessed
with the assistance of Figs. 1 and 2.

Fig. 1 presents an example to illustrate the contraction for
the quadratic part in the case of a specific frequency compo-
nent f, of the output signal. All the frequency componentsfrom
fo = —1/2Tto+1/2T areintegrated in the Y»>-plane along the
line f, = fi + f2, and the frequency components from the first
periodic extension in the Y>-plane are contained in the integra-
tion path—this will lead to so-called “pseudoaliasing.” For the
cubically Volterranonlinear system showninFig. 2, thealiasing
occursalongtheplane f, = f1 + f2 + f3 inamore complicated
way. By referencing Figs. 1 and 2, if the aliasing effect is taken
into account, the total output Y'(f,,) can be written as

Y (fo) =Y1(fo) + Yo(fo) + Ya(fo — fs) + Ya(fo — fs)
+Y3(fo) + Ya(fo+ fs). (8

From the above, it is seen that, for the identification of non-
linear systems band-limited to |f;| < 1/27, it is sufficient
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to sample the input and output signals at twice the maximum
input frequency if the aliasing region istaken into consideration
during the identification approach. However, for satisfactory
identification, the bandwidth of the input signal should match
the spectral range of the unknown system itself.

I1l. MIXED-DOMAIN VOLTERRA MODEL

In this section, a “mixed-domain” cubic Volterra model is
described. The term “mixed-domain” comes from the fact that
both time- and frequency-domain components are involved in
the model. In the discrete time-domain, a Volterra-mapping-
based cubically nonlinear model with finite memory length L
can be represented as a truncated version of (1) as[8]

L1 L-1L-1
y(n) =Y h@zn—i)+>_ > (i, a(n—i)a(n—j)
1=0 1=0 5=0
£33 Y hai gy Katn =)
i=0 j=0 k=0
~z(n — Hx(n — k) + e(n). 9

In order to determine the mixed-domain model, we definethe
input and output vectors, respectively, as [9]

T
aty = [0, (0), a1, (1), sl (N = 1)) (10)
/ ! ! ! T
Yy = [yn(()), Yn(1), - Y (N = 1)} (11
where
2 () = 2(n —i) 9, (i) = yln — i), (12)
Let the DFT of 2/, and v/, be denoted by
T
X, =[x00), X4, W -] @)
T
vy = [V, i, i = s
From the definition of the DFT, we can obtain
1 N-—-1 N—1
fray ! —ik ! — ! ik
(19)

where w = ¢J@7/N),
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Simultaneoudly, for the same set of data, we calculate the
DFT of vectors

2 = [2(0). 2(1), ..oV 1] (16)
y=[s® o), oy -]

The DFT of vectors 2z and % can be denoted, respectively, by

T
X = [X(O), X(1), ...,X(N—l)} (18)
T
Y = [Y(o), Y(1),...,Y(N - 1)} (19)
By using (12) and (15), it is easy to show that
X! (k) = X*(k)w*™ Y!(k) =Y*(k)w*.  (20)

Substituting (12) into (9) and assuming L < N, we have

N-—-1 N—-1N-1
u(n) = Z ha (i), (1) + Z Z ha(i, §)a, (D)2l (5)

N—-1IN-1N-1
+ 5750 S hali, )l ()l (), (k) + eln).

i=0 j=0 k=0
(21)

Substituting (15) into (21) and applying the multidimensional
DFT of the Volterra kernels, we can obtain (22), shown at the
bottom of this page, where X /,(-) = X/, (-)/N, yr.(n), yo(n),
and yc(n) represent the linear, quadratic, and cubic items, re-
spectively. Hy (), H2(,) and Hs (,, ), are the one-, two-, and
three-dimensional DFT of %y (%), ho(4, §), and hs(i, 4, k), re-
spectively. Since (22) involves the time-domain output y(n) to-
gether with the frequency-domain input X/, (), the described
model in (22) is thus termed a mixed-domain model.

IV. ESTIMATION PROCEDURE OF VOLTERRA KERNELS

In order to identify the Volterra model from (22) using a
least-square solution technique under minimum sampling con-
ditions, we need to obtain amore compact form of y(n) by con-
sidering some symmetry propertiesof X/, (), H1(-), H2 (, ),and
Hs(,,). Without loss of generality, all Volterrakernelsin this

5~

p=—M+1 qg=—M+1

M M o o
®+ >, >, Hip oX,.(pX,L(9)

v~ v

ya(n)

M M M . . .
+ >SS Hip o X L)X LX) (22

p=—M+4+1 g=—M+1 r=—M+1

yc‘EN)
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paper are assumed to be homogenous and, therefore, the asso-
ciated transfer functions are symmetric and exhibit Hermitean
symmetry [8], i.e.,

Xn(m) = X7 (-m) (23)
Yo(m) =Y (-m) (24)
Hi(m) =H{(-m) (25)
ha(i, j) = ha(j, %) (26)
H>(p, q) = Ha(q, p) (27)
Hy(p, q) =H3(-p, —q) (28)
Hs(p, q. ) =H3(-p, —q, —7) (29)
ha(i, §, k) = ha(i, k, j)
=h3(4, i, k)
=hs(j, k, @)
=hs(k, 4, §)
=hs(k, J, i) (30)
Hs(p, q, ) = Ha(p, 7, q)
=Hs(q,p, 1)
= H3(q, 7, p)
=Hs(r, p, ) = Hs(r, ¢, p) (31)

where “+” denotes complex conjugate.

Next, we consider a geometrical interpretation of the iden-
tification regions for the linear, quadratic, and cubic term of
the mixed-domain Volterra model after the symmetry proper-
ties have been applied.

For the linear terms, by defining L(p) = Hi (p)X ' (p), we
have L(—p) = L*(p) Therefore, for p # 0 or M, we have
L(p) + L(—p) = 2Re{L(p)}, where Re{r} represents the real
part of . For p = 0 or M, L(p) isitself real and, thus, L(p) =
Re{L(p)}. Findly, the linear part can be uniquely determined
by Re{L(p)}, and Y(n) can be written as

M

ui(n) =" Re{H{(0)S1(n) } = STH,  (32)
k=0
where

Si(p) =In.(p)X ,(p) (33)
/ 1 ifp=00or M ”
L(p) = {2, otherwise (349

Hy, = [Re{Hy(0)} Re{ Hy(1)} ln{ H1(1)}
- Re{Hi(M)}] ! (35)

St = [Re{$1(0)} Re{ (1)} Im{ 51 (1)}

: -RE{SI(M)}] g (36)
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Fig.3. Effectof thesymmetry propertiesQ(p, ¢) =
Q*(q. p),and Q(M, q) =
plane.

Qg p),Q(—=p, —¢) =
Q* (M, —q) on the two-dimensional frequency

For p = 0 or M, H.(p) and S1(p) is itself rea, thus the
corresponding imaginary part is removed from Hy, and Sy, re-
spectively, of which the dimensional number is Ny, = 2M x 1.

For the quadratic terms, using the (p, ¢)-plane for the eight-
point DFT (N =8, M = 4) caseasan aid, asshown in Fig. 3,
and defining Q(p, ¢) = H3 (p, 9)X 1,(p)X 1,(¢), we have

Qp, 9) =Q(q, P) 37
Q(_p7 _Q) :Q*(Q7 p) (38)

After taking into account the above symmetry properties,
the quadratic part yg(n) can be uniquely determined by
Re{Q(p, q)} for those Q(p, q)’s denoted by black dots in
Fig. 3, and can be written as

ve(n)= > Re{Hi(p, )S2(p, 9} = SHHq  (40)
(p, )€U
S2(p, @) =1g(p, X, (p)X 1 (q) (41)

1, p=g=0orp=gq=M
Iow, =492 (=M 00 (p=lg,p#0, M)

4, otherwise
42
Ho = [HS HTH" - H"
--Héﬁ’*”THS?’*”THéﬁ’)T]T (43)
Sq = [SETSET ST s
g g T g T ()

where U is the set of the points denoted by the black dots in
Fig.3.1n (43) and (44), H™ = H{™ + iH™  and S5 =
S8 1388 form = 0, 1, ... N can be defined as

HY = [Hg(ko, m—k,) Ho(ko +1, m — k, — 1)

--HQ(/fjw, m—/ﬁw)]T (45)
ST = [Sa(ko, m — ky) Sa(ky + 1, m — ky — 1)
< So(kar, m — k)] " (46)

where k, = | (m + 1/2)] with | ] denoting the largest integer
being less or equal to », and kpy = M — 1 form = 0 or
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plane-
plane-2:p+q-+r=0
e |

Fig. 4. Counting region for cubic terms.

M < m < N, kpy = M otherwise. It should be noted that
Ho(M, 0), HY, HSY) | Sy(M, 0), 55, and S are them-
selves real and, thus, the corresponding imaginary parts are re-
moved from Hg and Sg, respectively. The dimensional num-
bersof Hg and Sg arethen Ng = M(2M +1) x 1.

By defining C(p. ¢. ) = H3(p, ¢, 7) X ()X ()X 1,(1)
for the cubic terms, we have

Clp, ¢, 7) =C(p, 7, @)
=C(q, p,7)
= C(q7 77 p)
=C(r,p, q)
=C(r, q, p) (47)
C(M, M, ) =C*(M, M, —r) (48)
C(pa q, T) :C*(_Qa —-D, _7) (49)
C(M, q,r)=C"(M, —q, —7). (50)

Using the cubein three-dimensional space (p, ¢, ) asanaid,
as shown in Fig. 4, after taking into account the properties of
(47), the counting region for the cubic terms is reduced to one-
sixth of the cubewith asummation to theplane of m = p+qg+r
with—-M+1<p,¢gr < M,r<g<padd<mc<
3M. For example, planes-1 and plane-2 in Fig. 4 describe the
counting plane for the cubic terms in the condition of m = 0
and m = M, respectively.

In order to describethe Hermitean symmetry properties of the
cubic terms, we usethe (p, ¢, r) three-dimensional cube for an
eight-point DFT (N = 8, M = 4) case as an aid. We then
cut the counting region shown in Fig. 4 into N pieces along the
p-axis, as shown in Fig. 5.

After taking into account the above symmetry proper-
ties, the cubic parts y-(n) can be uniquely determined by
Re{C(p, q, )} for those C(p, ¢, r)’'s denoted by the black
dots marked by thelineof m = 0, 1, 2, ... 3M inFig. 5 and
can be written as

ye(n)= > Re{H;(p, ¢ )S3(p, ¢, 7)}
(p,q,mEV
=SLHc (51)
53(1)’ q, T) :IC(pa q, T)JC(pa q, T) (52)

6, if(p#q),(g#r),and(p#r)
Ie(p, q, )= < 3, otherwise (53)

L ifp=g=1)
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Fig.5. Effect of Hermitean symmetry propertiesin the case of the cubic terms
for aDFT of dimension N = 8.

Je(p, a,7) = {17 ifm=.0andm:3M -
2, otherwise
He = [H?E?,)TH?E?)T LLHDT g 2aT
o HM ] ) (55)
Sc = [Ség)TS?()?)T o S?(’y)T o S?(’ij\l)T
o S?(’iM)T} ) (56)

whereU istheset of the pointsdenoted by the black dotsmarked
by thelineof m =0, 1, 2, ... 3M inFig. 5. H{™ = H{™ +
dHS™ and S = S 44050 form =0, 1,2, ... 3M can
be defined as

i H3(lp, I, m —1lp — 11) T
Hs(lo, ki, m —lo— k1)
Hi(lg—1,0;, m—lg—1l1 +1)

H™M = (57)

Hg(lo—l, k‘l, m—lo—k1+1)

Hs(ko, ki, m — ko — ky)
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T S3(lo, Iy, m—lo— 1) i
Sg(lo, ]{}1, m — lo — /{}1)
Sg(lo —Lli,m—1lg—1{+ 1)

S = (58)

Sa(lo—1, ky, m—1g— k1 +1)

Sa(ko, ki, m — ko — ki)

wherely = |(m + 2/3)] with || denoting the largest integer
being lessorequal tor,and ko = M —1form < M, ko =M
otherwise; Iy = [(m —p+1/2)] andky = p — r[2p — m —
ko] — A where

2p —m — ko, if(2p—m—1ko) >0
7’[2p—m—k0]:{ )
0, if (2p—m—ky) <0
and
\ {1, M<m<2Madp=M
1o, otherwise.
SpeCIa“y note that H3(p7 07 _p)u H3(M7 q, _Q)y

H3(M7 M7 0)! H3(M7 M7 M)’ 53(p7 07 _p)’ 53(M7 q, _(.Z)y
S3(M, M, 0), and S3(M, M, M) are themselves real, thus,
the corresponding imaginary parts are removed from Hq and
Sc¢, respectively. Therefore, the dimensional numbers of H¢
and S¢ are N = 2[(/%;1 -l + 1)(/€0 —l,+ 1) — (M+ 1)] x 1.
Finally, by considering (32), (40), and (51), we can obtain

y(n)=X"H (59)
where
T
H = [HY, HE, HE] (60)
T
X = [S{, S5, Sg} . (61)

Thetotal of unknown variablesin (59) is N+ Ng + N, but
by using the DFT of N, we can set up only N equationsfromthe
expansion (59). In order to solve H, theinput z(n) should have
atleast | (N + Ng+ N¢g)/N| x N general random input data
so that the argument matrix of X isanonsingular matrix. Inthis
way, we can apply aleast squares method to solve the equation,
and find the solution for the cubic Volterra transfer functions
H;, Hg and Hc. The time-domain Volterra kernels can then
be obtained from the appropriate inverse DFTs. Although the
details of a Volterra kernel model up to third order have been
addressed here, the methodology itself in not limited to athird-
order Volterramodel and is straightforward to extend to higher
order Volterra models.

V. COMPUTER SIMULATION

A software tool combining Visual C++ and MATLAB has
been developed to implement and verify the above approach
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Fig. 8. Comparison between results from SPICE (¢) and results from the
present method using multidimensional convolutions on Volterra kernels.

and the software has been used to evaluate a range of known
cubically nonlinear systems. Excellent agreement has been ob-
tained between identified and theoretical kernels in all cases.
Some verification examples may be found in the authors' pre-
vious publications [13]-{16]. Here, the two examples particu-
larly emphasize applications to high frequencies.

AsshowninFig. 6(a), thefirst exampleinvolvesalumped-el-
ement |ow-pass filter terminated by a voltage-controlled non-
linear load resistance defined by the function of ¢ = 0.02v +
0.01v3. The filter's linear transfer characteristics under 50-2
load termination is shown in Fig. 6(b).

Fig. 7 showsthe Volterrakernelsthat are obtained by the pro-
posed method with a 3-GHz sampling frequency using a mul-
titone excitation and a 32-point DFT technique. Due to space
limitations, the third-order kernels are sliced along the #3-time
axisand only oneitem of ¢3 = 0 isshown in Fig. 7.

Theidentified Volterra kernels can be used within atime-do-
main simulation to obtain the time-domain response to any ar-
bitrary excitation. The output voltage waveforms compared in
Fig. 8 are obtained from the SPICE simulator and from multidi-
mensional convolution operations using the above kernelswhen
the system is excited by an input of 8-ns pulsewidth and 125-ps
rise and fall times at different pulse amplitudes.

In the second example, an experimental hybrid power am-
plifier was designed and fabricated to verify the previously de-
scribed modeling method by comparing the measured and pre-
dicted behavior of abipolar junction transistor (BJT) RF power
amplifier under excitation by an 1S-95 CDMA signal. Fig. 9
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Fig. 9. Schematic diagram of hybrid test amplifier.
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Fig. 12. Measured and calculated intermodulation spectrum.

givesthe schematic of the amplifier. The active component used
in the power amplifier was an HP-AT42085 bipolar transistor
with parameters Pdiss = 500 mW, Ic = 35 mA,and VCC =
8 V.

Fig. 10 shows the measured and calculated results of funda-
mental and intermodulation performance at the frequency point

of 1.8 GHz. The frequency separation between the two tonesis

1 MHz. Fig. 11 shows a comparison of the measured and sim-

ulated output power spectrum of the power amplifier under a

IS-95 CDMA signal excitation. Fig. 12 showsthe measured and
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simulated output power spectrum of the power amplifier excited
by two passbhand CDMA signalswith 5-MHz offset centered on
1.8025 GHz. In Fig. 11 and Fig. 12, the resolution bandwidth
of the spectrum analyzer is set to 3 kHz and the frequency axis
is normalized by applying an 1800-MHz frequency offset, i.e.,
the 0.0 Hz represents 1800 MHz. As can be seen, the intermod-
ulation products are broadened to roughly three times the band-
width of the CDMA signals themselves.

V1. CONCLUSIONS

This paper has described an efficient and accurate method
for the estimation of Volterra kernels for a nonlinear system.
As the above examples have shown, favorable agreement has
been obtained in arange of validation studies undertaken of the
proposed modeling method. This paper has aso shown that the
Volterrarepresentation can successfully predict nonlinear inter-
modulation distortions, especially in the case of the nonlinear
characteristics of a microwave power amplifier. The Volterra
description generally works well for a power amplifier if the
input power level is not increased much beyond the 1-dB com-
pression input power level. Furthermore, being a descriptive
black-box-type model of the system, thiskind of representation
is also capable of efficiently predicting the amplifier’s output
spectrum when driven by multiple digitally modul ated commu-
nication signals. Simulations of this kind are difficult to under-
take using other available methods. This makes it possible for
the amplifier designer to select the appropriate power compo-
nent and for the communi cation system designer to consider the
effects of impairments such asadjacent channel interference and
cross-modulation.
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