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Volterra-Mapping-Based Behavioral Modeling
of Nonlinear Circuits and Systems

for High Frequencies
Tianhai Wang, Member, IEEE, and Thomas J. Brazil, Senior Member, IEEE

Abstract—This paper presents and validates a discrete-time/fre-
quency-domain approach to the problem of Volterra-series-based
behavioral modeling for high-frequency systems. The proposed
technique is based on the acquisition of samples of the input/output
data, both of which are sampled at the Nyquist rate corresponding
to the input signal. The method is capable of identifying the
time-/frequency-domain Volterra kernels/transfer functions of
arbitrary causal time-invariant weakly nonlinear circuits and
systems operating at high frequencies subject to essentially a
general random or multitone excitation. The validity and effi-
ciency of the proposed modeling approach has been demonstrated
by several examples in high-frequency applications and good
agreement has been obtained between results calculated using
the proposed model and results measured or simulated with
commercial simulation tools.

Index Terms—Behavioral modeling, high-frequency systems,
nonlinear circuits and systems, Volterra series.

I. INTRODUCTION

STIMULATED by the enormous growth in the com-
mercial applications of RF/microwave technologies,

computer-aided design (CAD) is becoming a critical enabling
technology in the development of modern high-frequency
circuits and systems, e.g., in third-generation digital mobile
cellular communication systems around 2.0 GHz [1], [2].
Although CAD encompasses a great many aspects of design,
it is very important that practical analysis tools demonstrate
an efficient simulation speed and they should also provide
an accurate modeling environment for the prediction of the
nonlinear behavior of RF/microwave circuits and systems.

Due to the advantages of using a behavioral model (also
called a “black-box” model) in simulation, it has become an
approach recently investigated by many researchers [3]–[5].
In general, the time-domain unit impulse response or its
associated frequency-domain transfer function can completely
characterize the behavior of any linear time-invariant network,
and these can be thought as a form of behavioral model for
linear networks. A typical example in the high-frequency
regime is provided by the -parameters of a linear network. For

Manuscript received June 30, 2002; revised December 16, 2002. This work
was supported under the Enterprise Ireland Strategic Research Program.

T. Wang is with the Department of Corporate Research and Design,
Tycoelectronics, M/A-COM Inc., Lowell, MA 01853 USA (e-mail:
wangtian@tycoelectronics.com).

T. J. Brazil is with the Department of Electronic and Electrical Engineering,
University College Dublin, Dublin 4, U.K. (e-mail: tom.brazil@ucd.ie).

Digital Object Identifier 10.1109/TMTT.2003.810151

nonlinear networks, however, an extension through an approach
such as the Volterra theory has to be used to find an equivalent
framework. Volterra series-based behavioral models have been
used successfully to solve many problems in science and engi-
neering and this kind of approach is playing an ever-increasing
role in recent years [6]–[9]. A critical problem in utilizing
Volterra mapping as the basis for a behavioral model is the
identification/estimation of the time-domain Volterra kernels
or the associated frequency-domain Volterra transfer functions.
Several identification algorithms in the frequency-domain
have been introduced in earlier work with the assumption of
Gaussian inputs [10], Poisson random impulse train inputs
[11], or multitone sinusoidal inputs [12]. Although these can
lead to a significant simplification of the identification process,
the input excitations in the first two cases are assumed to
satisfy strict Gaussian or Poisson statistical properties, while
the probe method is only valid for certain nonlinear circuits or
systems subject to incommensurate multitone sinusoidal input
[10]–[12].

Other discrete frequency-domain methods with subsequent
improvements [7], [8] have been described, which are more
general in the sense that no specific statistical assumption needs
be made about the input. However, the sampling frequency
must be at least -times the bandwidth of the input signal
for the identification of an th-order Volterra-series-based
nonlinear system. The corresponding computation complexity
is increased since, in the first place, large-order discrete Fourier
transforms (DFTs) are required under these sampling frequency
conditions, and secondly, increased quantities of data samples
in blocks are required for the estimation of Volterra transfer
functions to meet the minimum mean square error (MMSE)
estimate criterion. Furthermore, aliasing effects have been
largely ignored in the literature to date when digital methods
have been used to identify Volterra kernels for continuous-time
nonlinear systems using sampling techniques.

The method proposed in this paper aims to achieve improved
performance compared to conventional discrete frequency-do-
main methods by performing a mixed-domain (time- and fre-
quency-domain) analysis [9]. It seeks to overcome some of the
disadvantages of previously reported methods by properly ac-
counting for the aliasing effect under the much more favorable
condition of Nyquist sampling of the input signal, while also
providing greater accuracy by adapting a least squares solu-
tion technique with minimally sampled data blocks. Some in-
dividual parts of this study have already been briefly outlined
in the authors’ earlier publications [13]–[16], however, a more
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systematic and unified discussion of the mathematical basis is
provided in this paper. In order to properly describe the basis
and range of applicability of the proposed approach, our atten-
tion is focused on the Volterra-based modeling of an arbitrary
causal time-invariant cubically nonlinear system. This paper is
organized as follows. In Section II, we introduce techniques to
take account of aliasing effects, which result in improved sam-
pling requirements for nonlinear system identification. In Sec-
tion III, a mixed-domain analysis is performed to obtain the dis-
crete mixed-domain model. In Section IV, we describe the esti-
mation procedure of the Volterra kernels and transfer functions.
Finally, computer simulation and experimentation are presented
in Section V.

II. ALIASING EFFECTS AND SAMPLING REQUIREMENTS

For the numerical identification of a Volterra-mapping-based
nonlinear system, the input/output signals must be sampled for
further processing. It is well known that a nonlinear system
may generate new output frequency components that extend far
beyond the input frequency bandwidth. Therefore, in previous
studies on nonlinear system identification [6]–[9], the sampling
frequency is more than twice the maximum output frequency
in order to avoid aliasing effects. However, it is sufficient to
sample at twice the maximum input frequency for nonlinear
system identification if the aliasing effect is taken into account.
The details will be demonstrated in this section.

In the discrete time domain, a Volterra-series description of a
cubic nonlinearity can be defined using a discrete-time version
of the continuous time-domain series as [6]–[9]

(1)

where and are sampled versions of the contin-
uous-time input/output signals, while denotes the model
error at the time instant ( is the sampling time interval and

, , and correspond to the first-, second-,
and third-order discrete-time Volterra kernels, respectively).

Suppose an input signal band-limited to half the sampling
frequency is applied to this nonlinear system. In the frequency
domain, the Volterra model can be described as

(2)

where

(3)

(4)

(5)

Fig. 1. Illustration of the discrete-time operation that reduces the
two-dimensional frequency function Y to the one-dimensional Fourier
transform Y of the output signal. In particular, it shows the generation of the
output components at f .

Fig. 2. Illustration of the discrete-time operation that reduces the
three-dimensional frequency function Y to the one-dimensional Fourier
transform Y of the output signal. In particular it shows the generation of the
output components at f .

(6)

(7)

and are the discrete Fourier transform of and
, while , , and are the

one-, two-, and three-dimensional discrete Fourier transforms
of , , and , respectively.

For any output frequency component ( ),
the linear part of satisfies the well-known Shannon sam-
pling theorem, hence, the output has no aliased compo-
nents, but the quadratic part and the cubic part are
obtained through the contraction operation as given by (4) and
(5). Aliasing effects exist for these, and they may be assessed
with the assistance of Figs. 1 and 2.

Fig. 1 presents an example to illustrate the contraction for
the quadratic part in the case of a specific frequency compo-
nent of the output signal. All the frequency components from

to are integrated in the -plane along the
line , and the frequency components from the first
periodic extension in the -plane are contained in the integra-
tion path—this will lead to so-called “pseudoaliasing.” For the
cubically Volterra nonlinear system shown in Fig. 2, the aliasing
occurs along the plane in a more complicated
way. By referencing Figs. 1 and 2, if the aliasing effect is taken
into account, the total output can be written as

(8)

From the above, it is seen that, for the identification of non-
linear systems band-limited to , it is sufficient
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to sample the input and output signals at twice the maximum
input frequency if the aliasing region is taken into consideration
during the identification approach. However, for satisfactory
identification, the bandwidth of the input signal should match
the spectral range of the unknown system itself.

III. MIXED-DOMAIN VOLTERRA MODEL

In this section, a “mixed-domain” cubic Volterra model is
described. The term “mixed-domain” comes from the fact that
both time- and frequency-domain components are involved in
the model. In the discrete time-domain, a Volterra-mapping-
based cubically nonlinear model with finite memory length
can be represented as a truncated version of (1) as [8]

(9)

In order to determine the mixed-domain model, we define the
input and output vectors, respectively, as [9]

(10)

(11)

where

(12)

Let the DFT of and be denoted by

(13)

(14)

From the definition of the DFT, we can obtain

(15)
where .

Simultaneously, for the same set of data, we calculate the
DFT of vectors

(16)

(17)

The DFT of vectors and can be denoted, respectively, by

(18)

(19)

By using (12) and (15), it is easy to show that

(20)

Substituting (12) into (9) and assuming , we have

(21)

Substituting (15) into (21) and applying the multidimensional
DFT of the Volterra kernels, we can obtain (22), shown at the
bottom of this page, where , , ,
and represent the linear, quadratic, and cubic items, re-
spectively. , and , are the one-, two-, and
three-dimensional DFT of , , and , re-
spectively. Since (22) involves the time-domain output to-
gether with the frequency-domain input , the described
model in (22) is thus termed a mixed-domain model.

IV. ESTIMATION PROCEDURE OF VOLTERRA KERNELS

In order to identify the Volterra model from (22) using a
least-square solution technique under minimum sampling con-
ditions, we need to obtain a more compact form of by con-
sidering some symmetry properties of , , , and

. Without loss of generality, all Volterra kernels in this

(22)
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paper are assumed to be homogenous and, therefore, the asso-
ciated transfer functions are symmetric and exhibit Hermitean
symmetry [8], i.e.,

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

where “ ” denotes complex conjugate.
Next, we consider a geometrical interpretation of the iden-

tification regions for the linear, quadratic, and cubic term of
the mixed-domain Volterra model after the symmetry proper-
ties have been applied.

For the linear terms, by defining , we
have Therefore, for or , we have

, where represents the real
part of . For or , is itself real and, thus,

. Finally, the linear part can be uniquely determined
by , and can be written as

(32)

where

(33)

if or

otherwise
(34)

Re (35)

Re

(36)

Fig. 3. Effect of the symmetry propertiesQ(p; q) = Q(q; p),Q(�p; �q) =
Q (q; p), and Q(M; q) = Q (M; �q) on the two-dimensional frequency
plane.

For or , and is itself real, thus the
corresponding imaginary part is removed from and , re-
spectively, of which the dimensional number is .

For the quadratic terms, using the -plane for the eight-
point DFT case as an aid, as shown in Fig. 3,
and defining , we have

(37)

(38)

(39)

After taking into account the above symmetry properties,
the quadratic part can be uniquely determined by

for those ’s denoted by black dots in
Fig. 3, and can be written as

(40)

(41)

or

or

otherwise
(42)

(43)

(44)

where is the set of the points denoted by the black dots in
Fig. 3. In (43) and (44), , and

for can be defined as

(45)

(46)

where with denoting the largest integer
being less or equal to , and for or
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Fig. 4. Counting region for cubic terms.

otherwise. It should be noted that
, , , , , and are them-

selves real and, thus, the corresponding imaginary parts are re-
moved from and , respectively. The dimensional num-
bers of and are then .

By defining
for the cubic terms, we have

(47)

(48)

(49)

(50)

Using the cube in three-dimensional space as an aid,
as shown in Fig. 4, after taking into account the properties of
(47), the counting region for the cubic terms is reduced to one-
sixth of the cube with a summation to the plane of
with , , and

. For example, planes-1 and plane-2 in Fig. 4 describe the
counting plane for the cubic terms in the condition of
and , respectively.

In order to describe the Hermitean symmetry properties of the
cubic terms, we use the three-dimensional cube for an
eight-point DFT ( case as an aid. We then
cut the counting region shown in Fig. 4 into pieces along the

-axis, as shown in Fig. 5.
After taking into account the above symmetry proper-

ties, the cubic parts can be uniquely determined by
for those ’s denoted by the black

dots marked by the line of in Fig. 5 and
can be written as

(51)

(52)

if and

otherwise

if

(53)

Fig. 5. Effect of Hermitean symmetry properties in the case of the cubic terms
for a DFT of dimension N = 8.

if and

otherwise
(54)

(55)

(56)

where is the set of the points denoted by the black dots marked
by the line of in Fig. 5.

and for can
be defined as

...

...

...

...

(57)
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...

...

...

...

(58)

where with denoting the largest integer
being less or equal to , and for ,
otherwise; and

where

if

if

and
and

otherwise

Specially note that , ,
, , , ,
, and are themselves real, thus,

the corresponding imaginary parts are removed from and
, respectively. Therefore, the dimensional numbers of

and are .
Finally, by considering (32), (40), and (51), we can obtain

(59)

where

(60)

(61)

The total of unknown variables in (59) is , but
by using the DFT of , we can set up only equations from the
expansion (59). In order to solve , the input should have
at least general random input data
so that the argument matrix of is a nonsingular matrix. In this
way, we can apply a least squares method to solve the equation,
and find the solution for the cubic Volterra transfer functions

and . The time-domain Volterra kernels can then
be obtained from the appropriate inverse DFTs. Although the
details of a Volterra kernel model up to third order have been
addressed here, the methodology itself in not limited to a third-
order Volterra model and is straightforward to extend to higher
order Volterra models.

V. COMPUTER SIMULATION

A software tool combining Visual C++ and MATLAB has
been developed to implement and verify the above approach

Fig. 6. Low-pass filter with nonlinear termination.

Fig. 7. Estimated first-, second-, and third-order (t = 0–1:5 ns) Volterra
kernel of the low-pass filter with nonlinear termination.

Fig. 8. Comparison between results from SPICE (•) and results from the
present method using multidimensional convolutions on Volterra kernels.

and the software has been used to evaluate a range of known
cubically nonlinear systems. Excellent agreement has been ob-
tained between identified and theoretical kernels in all cases.
Some verification examples may be found in the authors’ pre-
vious publications [13]–[16]. Here, the two examples particu-
larly emphasize applications to high frequencies.

As shown in Fig. 6(a), the first example involves a lumped-el-
ement low-pass filter terminated by a voltage-controlled non-
linear load resistance defined by the function of

. The filter’s linear transfer characteristics under 50-
load termination is shown in Fig. 6(b).

Fig. 7 shows the Volterra kernels that are obtained by the pro-
posed method with a 3-GHz sampling frequency using a mul-
titone excitation and a 32-point DFT technique. Due to space
limitations, the third-order kernels are sliced along the -time
axis and only one item of is shown in Fig. 7.

The identified Volterra kernels can be used within a time-do-
main simulation to obtain the time-domain response to any ar-
bitrary excitation. The output voltage waveforms compared in
Fig. 8 are obtained from the SPICE simulator and from multidi-
mensional convolution operations using the above kernels when
the system is excited by an input of 8-ns pulsewidth and 125-ps
rise and fall times at different pulse amplitudes.

In the second example, an experimental hybrid power am-
plifier was designed and fabricated to verify the previously de-
scribed modeling method by comparing the measured and pre-
dicted behavior of a bipolar junction transistor (BJT) RF power
amplifier under excitation by an IS-95 CDMA signal. Fig. 9
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Fig. 9. Schematic diagram of hybrid test amplifier.

Fig. 10. Comparison of measured and calculated intermodulation
nonlinearities.

Fig. 11. Measured and simulated output power spectrum.

Fig. 12. Measured and calculated intermodulation spectrum.

gives the schematic of the amplifier. The active component used
in the power amplifier was an HP-AT42085 bipolar transistor
with parameters mW, mA, and

V.
Fig. 10 shows the measured and calculated results of funda-

mental and intermodulation performance at the frequency point
of 1.8 GHz. The frequency separation between the two tones is
1 MHz. Fig. 11 shows a comparison of the measured and sim-
ulated output power spectrum of the power amplifier under a
IS-95 CDMA signal excitation. Fig. 12 shows the measured and

simulated output power spectrum of the power amplifier excited
by two passband CDMA signals with 5-MHz offset centered on
1.8025 GHz. In Fig. 11 and Fig. 12, the resolution bandwidth
of the spectrum analyzer is set to 3 kHz and the frequency axis
is normalized by applying an 1800-MHz frequency offset, i.e.,
the 0.0 Hz represents 1800 MHz. As can be seen, the intermod-
ulation products are broadened to roughly three times the band-
width of the CDMA signals themselves.

VI. CONCLUSIONS

This paper has described an efficient and accurate method
for the estimation of Volterra kernels for a nonlinear system.
As the above examples have shown, favorable agreement has
been obtained in a range of validation studies undertaken of the
proposed modeling method. This paper has also shown that the
Volterra representation can successfully predict nonlinear inter-
modulation distortions, especially in the case of the nonlinear
characteristics of a microwave power amplifier. The Volterra
description generally works well for a power amplifier if the
input power level is not increased much beyond the 1-dB com-
pression input power level. Furthermore, being a descriptive
black-box-type model of the system, this kind of representation
is also capable of efficiently predicting the amplifier’s output
spectrum when driven by multiple digitally modulated commu-
nication signals. Simulations of this kind are difficult to under-
take using other available methods. This makes it possible for
the amplifier designer to select the appropriate power compo-
nent and for the communication system designer to consider the
effects of impairments such as adjacent channel interference and
cross-modulation.
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